skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "David Wipf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. David Wipf (Ed.)
    Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimization method based on its performance on a set of training problems. This data-driven procedure generates methods that can efficiently solve problems similar to those in training. In sharp contrast, the typical and traditional designs of optimization methods are theory-driven, so they obtain performance guarantees over the classes of problems specified by the theory. The difference makes L2O suitable for repeatedly solving a particular optimization problem over a specific distribution of data, while it typically fails on out-of-distribution problems. The practicality of L2O depends on the type of target optimization, the chosen architecture of the method to learn, and the training procedure. This new paradigm has motivated a community of researchers to explore L2O and report their findings. This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization. We set up taxonomies, categorize existing works and research directions, present insights, and identify open challenges. We benchmarked many existing L2O approaches on a few representative optimization problems. For reproducible research and fair benchmarking purposes, we released our software implementation and data in the package Open-L2O at https://github.com/VITA-Group/Open-L2O. 
    more » « less